

The goal of this activity is to transcribe and translate this DNA sequence to a polypeptide (protein). This DNA sequence belongs to a zebrafish. Zebrafish are important to research because they share 70% of the genes with humans.

STEP 1: Transcribe DNA to RNA. (A >U; T > A; C > G; G > C)

STEP 2: Translate RNA to amino acids using the codon box below. Use the letter for each amino acid.

STEP 3: Use the table to decide which protein you made.

	U	С	A	G	
U	UUU } Phe - F UUC Leu - L UUG Leu - L	$\left. \begin{array}{c} UCU\\ UCC\\ UCA\\ UCG \end{array} \right\}$ Ser - S	UAU UAC } Tyr - Y UAA Stop UAG Stop	UGU UGC } Cys - C UGA Stop UGG } Trp - W	U C A G
c	$\left\{ \begin{array}{c} CUU\\ CUC\\ CUA\\ CUG \end{array} \right\}$ Leu - L	$\left\{ \begin{array}{c} CCU\\ CCC\\ CCA\\ CCG \end{array} \right\} Pro - P$	$\left\{ \begin{array}{c} CAU \\ CAC \end{array} \right\} \; His - H \\ \left\{ \begin{array}{c} CAA \\ CAG \end{array} \right\} \; Gln - Q \end{array}$	$\left(\begin{array}{c} CGU\\ CGC\\ CGA\\ CGG \end{array} \right)$ Arg - R	U C A G
	AUU AUC AUA AUG Met - M	$\left. \begin{array}{c} ACU\\ ACC\\ ACA\\ ACG \end{array} \right\} \text{Thr} - T$	AAU AAC AAA AAG Lys - K	AGU } Ser - S AGC } Arg - R AGG } Arg - R	U C A G
G	$\left. \begin{array}{c} GUU\\ GUC\\ GUA\\ GUG \end{array} \right\}$ Val - V	$\left\{ \begin{array}{c} GCU\\ GCC\\ GCA\\ GCG \end{array} \right\}$ Ala - A	GAU GAC GAA GAG GIU - E	$\left. \begin{array}{c} GGU\\ GGC\\ GGA\\ GGG\end{array} \right\}$ Gly - G	U C A G

D N A	TAC CAA CTC ACC TGT CTA CGG CTC GCG TGT CGG TAG GAA CCG GAC ACC CCT TTC GAG TTA
R N A	AUG GUU GAG UGG ACA GAU GCC GAG CGC ACA GCC AUC CUU GGC CUG UGG GGA AAG CUC AAU
A A	M-V-E-W-T-D-A-E-R-T-A-I-L-G-L-W-G-K-L-N

Using the amino acid sequence provided above, refer to the table below to identify the corresponding protein. Once you have found the matching protein, draw a circle around it.

	Protein Name	Amino Acid Sequence
	Estrogen Receptor Alpha	MVMSAHDRNT AGPTPRSP
\rightarrow	Beta-globin	MVEWTDAERT AILGLWGKLN
	T-Cell Receptor Alpha	XTNNVGRMIF GKGTKLIVDS
	Connective Tissue Growth Factor	MFSGMTQSTVI ALLFLTFLRW

CONCLUSION:

The protein I translated is: ____Beta Globin

I researched this protein and discovered that its function is: It is one of four chains that

make up a hemoglobin molecule. Hemoglobin carries oxygen in red blood cells.

If there were a mutation in the original DNA sequence, how would that affect the

protein?____If there were a DNA mutation in this code it would cause a mistake in the RNA

transcript. This would result in the wrong amino acid sequence and therefore a faulty protein._

Where in the cell does transcription occur?____Transcription happens in the nucleus where the DNA is.

Where in the cell does translation occur?__Translation occurs in the cytoplasm on a ribosome.

©2024 Sanford Health. All rights reserved. promise.sanfordhealth.org