\qquad

SEEING THE WHOLE PICTURE: RODS \& CONES

Answer the questions below as you progress through the Seeing the Whole Picture: Rods and Cones lesson and slideshow.

1. In the lesson slideshow, you will see 20 sets of colored circles. For each set, try to determine whether the left (L) or right (R) circle is overlapping the other. Circle your answer and mark ones you get wrong. After 5 sets, you will rotate your body and repeat. Record your answers in the table below.
2. Graph your results with C being the number of sets you answered correctly.

	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$			
$\mathbf{1}$	L	R	L	R	L	R	L

3. Fill in the KWL chart below considering the following question.

How do you see color?

MAPPING YOUR RODS \& CONES

MAKING THE POSTER BOARD

1. Use a pen and ruler to mark the center of the poster board 0° near the top.
2. Make a small X in the center below the 0° mark. This is your fixation point.
3. Draw a line under the 0° from one end of the poster board to the other.
4. Use a ruler to mark out to 120° counting by 10 on both the left and right of the 0°. Make sure you are using a standard poster board (28 inches $\times 22$ inches) so that every 10 degrees $=1$ inch.

MAKING THE MEASURING STICKS

1. Cut out nickel-sized circles from construction paper in at least three colors.
2. Use tape to attach each circle to the end of a stick.

3. Fill in the table below as you complete the steps in the lesson slideshow.

	Motion		Color	
	Left	Right	Left	Right
Trial 1				
Trial 2				
Trial 3				
Average				

5. Why can the stick motion be detected long before the color is detected?
6. We only see color in a focused area in the central visual field. Why do we believe we can see color throughout our whole visual field?
